Abstract

A novel wall-climbing robot mechanism designed for anti-hijacking task is presented. This mechanism consists of a negative pressure adhesion module, a vacuum suction module and a planetary-gear train. The design of biped-wheel hybrid locomotion mechanism, with the advantages of wheeled robots and legged robots, allows the robot to move fast and cross over obstacles easily. This design qualifies the robot for the motion of moving straight, turning in plane and crossing between inclined surfaces. Then the kinematics equations are derived and the locomotion modes are analyzed. Many experiments have been implemented and the results prove that the robot has such characteristics as rapid speed, excellent transition ability between inclined surfaces and curved surface adaptability. Therefore, this novel wall-climbing mechanism could be used for the application of inspection, surveillance and reconnaissance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.