Abstract

The usage of industrial robots in manufacturing industries has revolutionized the traditional manufacturing process into more diverse and sustainable modern manufacturing processes. This paper presents the design and analysis of a 6-DOF robotic arm, which will perform a highly précised micro friction stir welding process. Friction stir welding is a technology that is constantly evolving. It has played a vital role in connecting metals in numerous sectors since its invention in 1991, and one of the outcomes of its development is micro friction stir welding, which was invented in 2004. There are numerous advantages that a designed robotic arm possesses over other traditional micro friction stir welding machines, which include high precision, sustainability, flexibility, time, and cost-effectiveness, along with a small operation area. The robotic arm is designed in two phases; the first stage is a design of links and revolute joints, respectively, and high-speed motor selection for the end effector to operate at high torques with required precision and accuracy. In the second phase, the designed model was analyzed using ANSYS software. In this phase, the transient and structural analyses are performed to analyze the performance of the robotic arm under various conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call