Abstract
In this article, a novel distributed gradient neural network (DGNN) with predefined-time convergence (PTC) is proposed to solve consensus problems widely existing in multiagent systems (MASs). Compared with previous gradient neural networks (GNNs) for optimization and computation, the proposed DGNN model works in a nonfully connected way, in which each neuron only needs the information of neighbor neurons to converge to the equilibrium point. The convergence and asymptotic stability of the DGNN model are proved according to the Lyapunov theory. In addition, based on a relatively loose condition, three novel nonlinear activation functions are designed to speedup the DGNN model to PTC, which is proved by rigorous theory. Computer numerical results further verify the effectiveness, especially the PTC, of the proposed nonlinearly activated DGNN model to solve various consensus problems of MASs. Finally, a practical case of the directional consensus is presented to show the feasibility of the DGNN model and a corresponding connectivity-testing example is given to verify the influence on the convergence speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.