Abstract

Solar concentrators, which focus the sunlight on a small surface of solar cells, are a promising way of reducing expensive semiconductor area and thus also the energy generation costs of photovoltaics. This paper presents the design and the analysis of a concentrated photovoltaic (CPV) receiver for a linear Fresnel concentrator mirror module. The receiver is designed as hybrid concentrated photovoltaic–thermal (CPV-T) receiver, which enables simultaneous generation of power and heat in one compact receiver. Spectral splitting with selective absorptive media and thermal decoupling of heat carrier and solar cells improves the electrical efficiency. Computational fluid dynamics (CFD) simulations of various receiver-setups result in an electrical efficiency of the receiver up to 6.2% and a thermal efficiency of up to 61.2% at a specific selected operating design point. 62% of the wavelengths of the incoming solar spectrum between 500 to 1100 nm hit the solar cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call