Abstract

In this article, a new magneto rheological (MR) sponge damper is proposed for suppression of vibrations in a washing machine. The article presents design optimization of geometric parameters of MR sponge damper (MRSD) using the finite element analysis (FEA) and first order derivative techniques for a washing machine. The article explains the hysteresis behavior and the relationship of damping force with input current for the proposed MRSD. Moreover, the characteristics of the MRSD such as energy dissipation and equivalent damping coefficient are investigated experimentally in terms of input current and excitation amplitude. The passive dampers installed in washing machine are ineffective in reducing unwanted vibrations at resonant frequencies due to real time unbalanced mass. For this purpose, a test setup is established in order to compare the performance of passive dampers with the proposed MRSDs in a washing machine. It is noticed that MRSDs reduce average vibrations of 75.61 % in a low frequency band, whereas in a high frequency band, the MRSDs lessen average vibrations of 30.57 % in a washing machine. In order to determine the performance of proposed design MRSD, a detailed comparison of the performance parameters, such as total damping force, passive force, maximum average vibrations after suppression by MR dampers, maximum current and power ratings is provided with the existing designs of MR damper for washing machine from the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call