Abstract
Network-on-chip (NoC) architecture is regarded as a solution for future on-chip interconnects. However, the performance advantages of conventional NoC architectures are limited by the long latency and high power consumption due to multi-hop long-distance communication among processing elements. To solve these limitations, we employed on-chip wireless communication as express links for transferring data so that transfer latency can be reduced. A hybrid NoC architecture utilizing both wired and wireless communication approaches is proposed in this paper. We also devised a deadlock-free routing algorithm that is able to make efficient use of the incorporated wireless links. Moreover, simulated annealing optimization techniques were applied to find optimal locations for wireless routers. Cycle-accurate simulation results showed a significant improvement in transfer latency. Area and power consumption analysis demonstrates the feasibility of our proposed NoC architecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.