Abstract

Given the interest of researchers for wireless communications in electromagnetic (EM) shadow areas, a magnetic field communication has emerged to overcome RF challenges based on magnetic permeability characteristics. However, the magnetic field communication has the demerit of a short communication range. Considering this limitation, we have proposed the GMI sensor-based field receiver to obtain immunity to low-frequency noise and high sensitivity for extension of communication range in previous studies. Further, this paper designs a magnetic field communication system with a GMI sensor-based receiver including a transmitter. Even though the basic concept of magnetic field communication is taken from previous studies, this study conducts the different realization of the system with transmitter system and communication link. Besides, this paper proposes the experiment of magnetic field communication using a GMI sensor-based system to verify the applicability in the practical environment for the first time. Bit error rate (BER), spurious-free dynamic range (SFDR), and random noise are measured with on-off keying (OOK) communication link to analyze the stability and reliability of the system. The experimental verification and analysis entail the conditions of communication distance and channel medium to mimic practical communication in atmospheric, underwater, and underground environments. A comprehensive analysis of the system design and experimental verification for application in a practical environment show the possibility of the proposed system to realize improving wireless communications in EM shadow areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.