Abstract
Market forces are continually demanding devices with increased functionality/unit area; these demands have been satisfied through aggressive technology scaling which, unfortunately, has impacted adversely on the global interconnect delay subsequently reducing system performance. Line drivers have been used to mitigate the problems with delay; however, these have large power consumption. A solution to reducing the power dissipation of the drivers is to use lower supply voltages. However, by adopting a lower power supply voltage, the performance of the line drivers for global interconnects is impaired unless low-swing signalling techniques are implemented. The paper describes the design of a low-swing signalling scheme which consists of a low-swing driver, called the nLVSD driver which is an improved version of the MJ-driver [1] designed by Juan A. Montiel-Nelson and Jose C. Garcia. Subsequently, both low-swing driver schemes are analysed and compared focusing on their power consumption and performance characteristics, which are the main issues in present day IC design. A comparison between the two driver schemes showed that the nLVSD driver exhibited a 34% improvement regarding power consumption and a 28% improvement in delay when driving a 10mm length of interconnect. A comparison between the two schemes was also undertaken in the presence of ±3σ Process and Voltage (PV) variations. The analysis indicated that the nLVSD driver scheme was more robust than the MJ-driver with a 33% and 44% improvement with respect to power consumption and delay variations. In order to further improve the robustness of the nLVSD scheme against process variation, the scheme was further analysed to identify which process variables had the most impact on circuit delay and power consumption. For completeness the effects of process variation on interconnect delay and power consumption was also undertaken.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.