Abstract

The paper proposes a hybrid-excited wound field synchronous machine (HE-WFSM), which can achieve high reluctance torque utilization. The key of the proposed HE-WFSM is that two permanent magnets (PMs) assist each rotor pole in forming an additional magnetic flux circle. It is opposite to the magnetic flux circle along the q-axis in the WFSM. The reduction of the q-axis flux can help to improve the saliency ratio and reluctance torque. Additionally, the asymmetrical flux linkage achieves a closest current phase angle between the maximum field torque and the maximum reluctance torque. To highlight the advantages of the proposed HE-WRSM, a general WFSM was adopted as the basic machine and analyzed under the same operating conditions. All performances of the basic machine and proposed HE-WFSM were predicted using finite element analysis (FEA) in Jmag-Designer. Finally, it was confirmed that the proposed HE-WRSM can achieve high reluctance torque utilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.