Abstract

This paper presents a novel design strategy for surface inset permanent magnet (SIPM) motors to suppress torque pulsations and maintain the high output torque by integrating the magnet skewing and asymmetrical rotor configurations. The magnet skewing is implemented within one magnet pole pitch to reduce cogging torque by avoiding excessive torque degradation, and the asymmetrical rotor is designed to improve the utilization of the torque components, thus to compensate the decreased torque due to the magnet skewing. To highlight the advantages of the proposed motor, a conventional SIPM motor is adopted for performance comparison with the aid of the finite element method. As a result, the proposed SIPM motor highly reduced the cogging torque (−79.7%) and torque ripple (−54.7%) while maintaining a high average torque when compared to the conventional SIPM motor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.