Abstract

Quantum-dot cellular automata (QCA), a nano-scale computer framework, is developing as a potential alternative to current transistor-based technologies. However, it is susceptible to a variety of fabrication-related errors and process variances because it is a novel technology. As a result, QCA-based circuits pose reliability-related problems since they are prone to faults. To address the dependability challenges, it is becoming increasingly necessary to create fault-tolerance QCA-based circuits. On the other hand, the applications of code converters in digital systems are essential for rapid signal processing. Using fault-tolerance XOR and multiplexer, this research suggests a nano-based binary-to-gray and gray-to-binary code converter circuit in a single layer to increase efficiency and reduce complexity. The fault-tolerance performance of the suggested circuits against cell omission, misalignment, displacement, and extra cell deposition faults has significantly improved. Concerning the generalized design metrics of QCA circuits, the fault-tolerance designs have been contrasted with the existing structures. The proposed fault-tolerance circuits' energy dissipation findings have been calculated using the precise QCADesigner-E power estimator tool. Using the QCADesigner-E program, the proposed circuits' functionality has been confirmed. The results implied the high efficiency and applicability of the proposed designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.