Abstract

AbstractIn this paper, a waveguide consisting of a core of As2Se3 chalcogenide glass and the upper and lower claddings of MgF2 with two zero-dispersion wavelengths (ZDW) has been proposed. By optimization of the dimensions of the core and the claddings, their effects on the dispersion curve have been investigated and a suitable structure with a flat dispersion curve, an effective mode area of ​​1.6 μm2 in a pump wavelength of 2.8 μm, and hence, a nonlinear coefficient greater than 34 w−1 m−1 has been obtained. A broadband supercontinuum in a wavelength range of 1.5 μm to 15 μm has been generated by applying an input pulse with duration of 100 fs and a maximum power of 2 kw to this waveguide. Due to the large width of the supercontinuum generated (SCG), the short length of the waveguide (maximum 5 mm), and a low input power, this structure is suitable for use in optical integrated circuits and its various applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.