Abstract

The design and analysis of a device to measure the burst strength (strength under a state of pure radial internal pressure) and compliance of vascular grafts and flexible pressurized tubes is presented. The device comprises three main sections, viz., a clean air-dry pressure controller, a test specimen holder, and automated software for control and data collection. Air pressure is controlled by means of a valve and a dedicated mechanism allowing reaching up to 120 psi in increments of 1 psi, and recording pressure changes with 0.04 psi resolution. The circumferential strain is determined by measuring the radial displacement of the vascular graft using an optical arrangement capable of determining a maximum radial displacement of 10 mm with 0.02 mm resolution. The instrument provides a low uncertainty in compliance (±0.32%/100 mm Hg-1) and burst strength measurements. Due to its simplicity, the device can easily be reproduced in other laboratories contributing to a dedicated instrument with high resolution at low cost. The reliability of the apparatus is further confirmed by conducting finite element analysis, elasticity solutions for pressurized cylinders, and testing of small diameter vascular grafts made of a commercial aliphatic polyurethane tested under radial internal pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call