Abstract

A 60 GHz voltage-controlled oscillator with an inductive division LC tank has been designed in 90 nm CMOS. The analysis of the oscillator shows that the presence of higher harmonics, the capacitance nonlinearity and the very high K VCO are critical for the phase noise performance of oscillators. Therefore, a pseudo-differential amplifier is employed in this design because of its high linearity. Furthermore, the proposed inductive division reduces the phase noise by increasing the signal amplitude across the varactor, without affecting the operation mode of the cross-coupled pair transistors. It also helps to increase the tuning range by isolating the varactor from the parasitic capacitances of the transistors and interconnects. The mm-wave oscillator is fabricated in a 90 nm CMOS technology. Under 0.7 V supply, the oscillator achieves a tuning range from 53.2 GHz to 58.4 GHz, consuming 8.1 mW. At 58.4 GHz, the phase noise is -91 dBc/Hz at 1 MHz offset. Under 0.43 V supply, the oscillator achieves a tuning range from 58.8 to 61.7 GHz. At 61.7 GHz, the phase noise is -90 dBc/Hz @1& MHz offset with a power consumption of only 1.2 mW.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.