Abstract

This paper describes the design, kinematics, and workspace analysis of 3R2T and 3R3T parallel mechanisms (PMs) with large rotational angles about three axes. Since the design of PMs with high rotational capability is still a challenge, we propose the use of a new nonrigid (or articulated) moving platform with passive joints in order to reduce the interference between limbs and the moving platform. According to the proposed nonrigid platform and Lie subgroup of displacement theory, several 3R2T and 3R3T PMs are presented. Subsequently, the inverse kinematics and velocity analysis of one of the proposed mechanisms are detailed. Based on the derived inverse kinematic model, the constant-orientation workspace is computed numerically. Then, the analysis of rotational capability about the three axes is performed. The result shows that even if interference and singularity are taken into account, the proposed mechanisms still reveal the high continuously rotational capability about the three axes, by means of actuation redundancy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.