Abstract

A major performance and complexity limitation in broadband communications is the long channel delay spread which results in a highly-frequency-selective channel frequency response. Channel shortening equalizers (CSEs) are used to ensure that the cascade of a long channel impulse response (CIR) and the CSE is approximately equivalent to a target impulse response (TIR) with much shorter delay spread. In this paper, we propose a general framework that transforms the problems of design of sparse CSE and TIR finite impulse response (FIR) filters into the problem of sparsest-approximation of a vector in different dictionaries. In addition, we compare several choices of sparsifying dictionaries under this framework. Furthermore, the worst-case coherence of these dictionaries, which determines their sparsifying effectiveness, are analytically and/or numerically evaluated. Finally, the usefulness of the proposed framework for the design of sparse CSE and TIR filters is validated through numerical experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call