Abstract

The wide speed range and large flight envelope of the hypersonic vehicle require that its aerodynamic configuration still has good aerodynamic performance at low Mach number. Therefore, the variable Mach number waverider is proposed to achieve good flight performance in a wide speed range. In this paper, based on the delta-winged variable Mach number waverider, a variable-sweep-wing morphing waverider is proposed and studied, including four specific sweep-wing configurations, namely loiter, standard, dash and wing-retracted configurations. In the current study, the aerodynamic performances of this variable-sweep-wing morphing waverider with four configurations are investigated under subsonic/supersonic/hypersonic flight conditions. At the same time, the numerical approaches employed are validated against the available experimental data in the open literature. The obtained results show that compared with the wing-retracted configuration, the best flight performance of this variable-sweep-wing morphing waverider can be achieved using different configuration for different flight condition. However, within the hypersonic speed range, the aerodynamic performance is improved through morphing but its advantages are not as large as that in the subsonic speed. Besides, effects of wing downwash and shockwave are also analyzed. In conclusion, the variable-sweep-wing morphing waverider improves both low-speed and high-speed aerodynamic performances, and it expands the flight speed range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call