Abstract

In this paper, thermoacoustic refrigerator design strategy with parameters normalization and literature review covering the recent development in the modification of the resonator shape and size is discussed. The design of a 10 W cooling power thermoacoustic refrigerator using air as working substance and the effect of operating frequency on viscous and thermal penetration depths, and on stack sheet thickness and spacing are discussed. The promising 10 W cooling power TDH (Taper and Divergent section with Hemispherical end) resonator design operating with air and helium gases as working substances is analyzed using DeltaEC software. The analysis results show that the TDH resonator design using helium as working substance operates at lower drive ratio (14%) compared to air (25%). In comparison, DeltaEC predicts a decent low temperature of -35.4 o C at cold heat exchanger with a COP of 0.5294 when operated using helium gas, and for air is -9 oC and 0.8113 respectively, and the results are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call