Abstract

The technology of mounting electric direct drive motors into vehicle wheels has become one of the trends in the field of electric vehicle drive systems. The article presents suggestions for answering the question: How should magnets be mounted on the External Rotor Permanent Magnet Synchronous Machine (ERPMSM) with three phase concentrated windings, to ensure optimal operation of the electric machine in all climatic and weather conditions? The ERPMSM design methodology is discussed. Step by step, a method related to the implementation of subsequent stages of design works and tools (calculation methods) used in this type of work are presented. By means of FEM 2D software, various ERPMSM designs were analyzed in terms of power, torque, rotational speed, cogging torque and torque ripple. The results of numerical calculations related to variations in geometric sizes and application of different base materials for each of ERPMSM machine components are presented. The final parameters of the motor designed for mounting inside the wheel of the vehicle are presented (Power = 53 kW, Torque = 347 Nm; Base speed = 1550 RPM), which correspond to the adopted initial assumptions.

Highlights

  • The reduction of energy consumption from fossil fuels is an inspiration for many designers in undertaking the effort of designing new structures used in electric vehicles

  • Designing an electric motor mounted inside the wheel is a challenge for designers, because the developed design should be characterized by high durability and energy efficiency while having low weight. In this type of electric machines, the rotor is located on the outside of a stationary centrally mounted stator (PMSM (Permanent Magnet Synchronous Machine), External Rotor Permanent Magnet Synchronous Machine (ERPMSM) (External Rotor PMSM), and ORPMSM (Outer Rotor PMSM)), unlike in classic synchronous motors with permanent magnets (IRPMSM (Internal Rotor PMSM))

  • This is a significant issue, giving the answer to the question: At what geometrical dimensions and materials used will we obtain the most power, torque and efficiency from a given volume of the electric machine as well as the smallest cogging torque and torque pulsations? The right choice of materials and geometric dimensions of the machine can contribute to reduction of electric

Read more

Summary

Introduction

The reduction of energy consumption from fossil fuels is an inspiration for many designers in undertaking the effort of designing new structures used in electric vehicles. Designing an electric motor mounted inside the wheel is a challenge for designers, because the developed design should be characterized by high durability and energy efficiency while having low weight. The purpose of this paper is to analyze the possibilities of changing the geometrical dimensions of an electrical machine, in particular the method of magnets assembly and the materials used for its manufacture. This is a significant issue, giving the answer to the question: At what geometrical dimensions and materials used will we obtain the most power, torque and efficiency from a given volume of the electric machine as well as the smallest cogging torque and torque pulsations? This is a significant issue, giving the answer to the question: At what geometrical dimensions and materials used will we obtain the most power, torque and efficiency from a given volume of the electric machine as well as the smallest cogging torque and torque pulsations? The right choice of materials and geometric dimensions of the machine can contribute to reduction of electric

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.