Abstract

AbstractRotating disc finds its application in gas turbines. Turbine discs are designed with variable thickness in order to prevent stress concentration, and closed form solutions for stress distribution are not reported extensively in literature. Numerical methods have been developed to provide approximate solution for the problem. In the present study, FEM approach is adopted to obtain a stress distribution in a rotating disc of variable thickness made of NIMONIC 901 and NIMONIC 105 super alloys. The comparison of stress distribution resulted in selecting NIMONIC 105 for the manufacture of disc with minimal induced maximum stress. Further, the optimum cost of production was obtained for NIMONIC 901 which further highlights the complexity of striking balance between the cost of production and stress levels induced in the disc. The study reveals that NIMONIC 901 is the better choice due to its low cost of production.KeywordsRotating discVariable thicknessShrinks fitNatural frequencyNIMONIC 105

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.