Abstract
SUMMARYWhen the end-effector of a robotic arm grasps different payload masses, the output of joint motion will vary. By using a model reference adaptive control approach, the payload variation effect can be solved. This paper describes the design for a hybrid controller for serial robotic manipulators by combining a PID controller and a model reference adaptive controller (MRAC) in order to further improve the accuracy and joint convergence speed performance. The convergence performance of the PID controller, the MRAC and the PID+MRAC hybrid controller for 1-DOF, 2-DOF and subsequently 3-DOF manipulators is compared. The comparison results show that the convergence speed and its performance for the MRAC and the PID+ MRAC controllers is better than that of the PID controller, and the convergence performance for the hybrid control is better than that of the MRAC control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.