Abstract

Encouraged by the positive test results of a /spl sim/1.5-m long prototype tri-axial cable, the Southwire Company/Oak Ridge National Laboratory (ORNL) team has conceived, designed, and built a 5-m tri-axial cable with three-phase terminations. The three concentric superconducting phases are made of BSCCO-2223 high-temperature superconducting (HTS) tapes, separated by layers of cold-dielectric (CD) tape. A copper braid is added as the grounding shield. The completed tri-axial cable is enclosed in a flexible cryostat. Cooling of the cable and terminations is achieved by liquid nitrogen flowing through the annulus between the cable and the cryostat. A challenging analysis and design problem was development and implementation of an insulator material between the concentric phases with high enough thermal conductivity to meet temperature gradient requirements and acceptable mechanical performance (strength and contraction on cool down). The resulting three-phase, CD cable and termination design is nearly as compact as the single-phase, co-axial design developed previously by Southwire/ORNL and represents the highest cable current density achievable in an electric alternating-current power cable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call