Abstract

Energy harvesting from rotational motion has drawn attention over the years to energise low-power wireless sensor networks in a rotating environment. The harvester works efficiently in a small frequency range which has to be similar to the driving frequency. Because of the constraints of size, precision, and the energy harvester’s weight, it is challenging to design it to suit micro applications. To deal with this problem, this paper proposes a rotational piezoelectric energy harvester (RPEH), which generates a voltage output from rotational motion. This design increases the gravitational force acting on the system by increasing the length of the beam, which in turn increases its vibration in a transverse direction. Euler-Bernoulli’s theory is utilized to derive the mathematical model of the RPEH under rotational motion, and harvester dynamic equations are derived using the electromechanical Lagrange equations. A prototype of RPEH is developed and the exactness of the proposed mathematical model is verified using experimental results and numerical simulation. Maximum power of 43.77 uW is produced at a rotating frequency of 21 Hz (1260 rpm) with an optimum load resistance of 1141.3 kΩ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.