Abstract

Standard Mel frequency cepstrum coefficient (MFCC) computation technique utilizes discrete cosine transform (DCT) for decorrelating log energies of filter bank output. The use of DCT is reasonable here as the covariance matrix of Mel filter bank log energy (MFLE) can be compared with that of highly correlated Markov-I process. This full-band based MFCC computation technique where each of the filter bank output has contribution to all coefficients, has two main disadvantages. First, the covariance matrix of the log energies does not exactly follow Markov-I property. Second, full-band based MFCC feature gets severely degraded when speech signal is corrupted with narrow-band channel noise, though few filter bank outputs may remain unaffected. In this work, we have studied a class of linear transformation techniques based on block wise transformation of MFLE which effectively decorrelate the filter bank log energies and also capture speech information in an efficient manner. A thorough study has been carried out on the block based transformation approach by investigating a new partitioning technique that highlights associated advantages. This article also reports a novel feature extraction scheme which captures complementary information to wide band information; that otherwise remains undetected by standard MFCC and proposed block transform (BT) techniques. The proposed features are evaluated on NIST SRE databases using Gaussian mixture model-universal background model (GMM-UBM) based speaker recognition system. We have obtained significant performance improvement over baseline features for both matched and mismatched condition, also for standard and narrow-band noises. The proposed method achieves significant performance improvement in presence of narrow-band noise when clubbed with missing feature theory based score computation scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.