Abstract

The paper presents an MRI-compatible neurosurgical robotic system that is designed to operate the head-mounted meso-scale 6-degree-of-freedom (DoF) spring-based MINIR-II. The robotic system consists of an actuation module, a transmission module, and the robot module. The transmission module consist of a switching mechanism for reducing the required number of motors by half, an innovative linkage mechanism to insert and retract the robot with minimal tendon displacement and friction loss, and a quick-connect mechanism for easy attachment of the disposable MINIR-II. Design, analysis, and development of each module are described in detail. Most of the critical components such as the robot, the quick-connect, the linkage mechanism, and various gear-pulley combinations in our design are 3-D printed. Preliminary mechanical properties characterization of the system and the capability of the underactuated system to replicate the critical functions of the 6-DoF robot are presented. The robot motion capability in a brain phantom model and its MRI compatibility in a 7-Tesla magnet were verified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.