Abstract

Purpose: Boilers are some of the most critical equipment in many production process especially in refinery operations, as it is used in generating steam for different applications. Different types of boilers are available commercially and have comparative advantages over one another. The pot or kettle boiler is the foremost of these equipment and consists of an empty vessel with a secure lid and a burner that is the source of heating. Though overtaken in industrial applications by more modern designs, these simple boilers which are often batch process equipment are still useful for small production processes at low pressures. The work here developed design adaptation of these batch boilers for continuous vaporization of crude oil for artesian refining of the oil.
 Methodology: Physical and assay data of Bonnylight Crude Oil (BLCO) was used for the work from the library of ASPEN Technologies. Simple mathematical models were developed from interpretation of implicit phenomena of the boiler transformation process. The models were validated using ASPEN HYSYS process simulation software Version 10.
 Findings: Computational results of the models and simulation results gave good convergence except for the heat transfer parameter of the model which had almost 100% of the simulation value. Nevertheless, the models have good predictive capabilities
 Recommendation: The design adaption models herein developed can be deployed with reasonable accuracy for the heating of crude oil especially for small artesian operations. However, the study space of the subject matter can be expanded for better accuracy and reliability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.