Abstract

All inorganic lead halide perovskite nanocrystals with excellent photoelectric characteristics as one of attractive new photoelectric materials are capable to apply in a variety of optoelectronic devices, but their instability and toxicity strongly impedes biological application. Herein, a novel approach of combining physical loading with hydrolytic packaging was exploited to firstly implant CsPbBr3 nanocrystals (NCs) and Fe3O4 quantum dots (QDs) into the mesoporous polystyrene microspheres (MPSs), then a silica shell layer was further coated on it to form the stable, safe and non-toxic (CsPbBr3/Fe3O4)@MPSs@SiO2 magneto-optical microspheres. The double core-shells packaging way not only improves the stability of the magneto-optical microspheres, but also avoids direct contact between CsPbBr3 NCs and biological target such as circulating tumor cells (CTCs) to solve the problem of heavy metal Pb in such material system. These magneto-optical microspheres can capture CTCs from both breast cancer cells (MCF-7) and lung cancer patient's blood in a few minutes. This work created a simple, safe and one-step method to identify and capture CTCs, which opens a new chapter for the application of lead halide perovskite in the biological field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.