Abstract

High viscosity of quench oil is a critical problem of quench system in ethylene cracking furnaces in petrochemical plant, due to its influences on the safety and stability of equipments, meanwhile, the variety of viscosity of quench oil has a negative impact on yield of ethylene and other chemical products. This paper presents a new statistical learning model to forecast the real-time variety of quench oil viscosity based on statistical algorithm and machine learning method. Firstly, statistical algorithm is applied to reduce dimension of parameters, secondly, fitting real-time predictive model through machine learning method. The simulation results shows that this model can monitor the variety of viscosity per hour according to identified controllable parameters which are highly correlated with viscosity of quench oil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.