Abstract

Sitting-drop protein crystallization is not used as commonly as the hanging-drop method for crystal optimization owing to the limitations of commercially available sitting-drop bridges, particularly when they are used in conjunction with 24-well crystallization plates. The commercially available sitting-drop bridge, containing space for only a single drop, restricts their wider use. Proteins that preferentially crystallize under sitting-drop conditions therefore require more work, time and resources for their optimization. In response to these limitations, and using 3D printing, a new sitting-drop bridge has been designed and developed, where five crystallization drops can be placed simultaneously in each well of a 24-well crystallization plate. This significantly simplifies the process and increases the potential of sitting drops in crystal optimization, reducing costs and hence overcoming the limitations of current approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.