Abstract
The ability to resist desiccation stress was examined in two semiterrestrial Ligia species, Ligia exotica Roux and L. taiwanensis Lee, in Taiwan, under a certain desiccation condition. L. exotica exhibited the longer survival time, lower weight-specific rates of water loss, and the slightly higher ability of tolerance to water loss, compared to L. taiwanensis. In each species, the animal size displays a positive correlation to the survival time and total ability to resist desiccation, yet this size effects on the weight-specific water loss rate is negative. Neither water content nor maximum tolerance to water loss shows the association with the animal size in both species. The path ways and magnitudes of the interactions between these traits of desiccation resistance are analyzed and diagrammed using a stepwise regression model. In this model, the body sizes of animal can explain the most part of the variations in the survival time. The body size has a direct effect and an indirect effect, through the effect on water loss rate, on the time that the experimental animals can survival under this desiccated condition. These results suggest that L. exotica attains larger size than does L. taiwanensis, a lower transpiration rate and, consequently, a greater ability in desiccation resistance. The performances of these interactions in the desiccated resistance are more advantageous for L. exotica to migrate and colonize in variable land habitats within a certain limit, and as a result that L. exotica shows a broader distribution pattern than did L. taiwanensis in Taiwan.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.