Abstract

Stress resistance characters are valuable tools for the study of acclimation potential, adaptive strategies and biogeographic patterns in species exposed to environmental variability. Water stress is a challenge to terrestrial arthropods because of their small size and relatively high area: volume ratio. Fruit flies have been investigated to record adaptive morphological and physiological traits, as well as to test their responses to stressful factors. In this study, we investigate the ability to cope with water stress, by examining variation in desiccation resistance in a species that lives mainly in desert lands. Specifically, we explored the genetic and ecological basis of desiccation resistance in populations of Drosophila buzzatii from Northern Argentina. We used a common garden experiment with desiccation treatments on a number of isofemale lines from four populations along an aridity gradient. Our results revealed significant among-population differentiation and substantial amounts of genetic variation for desiccation resistance. We also detected significant genotype-by-environment and genotype-by-sex interactions indicative that desiccation resistance responses of the lines assayed were environment- and sex-specific. In addition, we observed clinal variation in female desiccation resistance along gradients of altitude, temperature and humidity; that desiccation resistance is a sexually dimorphic trait, and that sexual dimorphism increased along the aridity and altitudinal gradients. Based on current evidence, we propose that the observed sex-specific responses may reflect different life history traits, and survival and reproductive strategies in different ecological scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.