Abstract

European beech (Fagus sylvatica L., hereafter beech), one of the major native tree species in Europe, is known to be drought sensitive. Thus, the identification of critical thresholds of drought impact intensity and duration are of high interest for assessing the adaptive potential of European beech to climate change in its native range. In a common garden experiment with one-year-old seedlings originating from central and marginal origins in six European countries (Denmark, Germany, France, Romania, Bosnia-Herzegovina, and Spain), we applied extreme drought stress and observed desiccation and mortality processes among the different populations and related them to plant water status (predawn water potential, ΨPD) and soil hydraulic traits. For the lethal drought assessment, we used a critical threshold of soil water availability that is reached when 50% mortality in seedling populations occurs (LD50SWA). We found significant population differences in LD50SWA (10.5–17.8%), and mortality dynamics that suggest a genetic difference in drought resistance between populations. The LD50SWA values correlate significantly with the mean growing season precipitation at population origins, but not with the geographic margins of beech range. Thus, beech range marginality may be more due to climatic conditions than to geographic range. The outcome of this study suggests the genetic variation has a major influence on the varying adaptive potential of the investigated populations.

Highlights

  • There is much evidence that ongoing climate change is warming the global climate system given the average temperature rise of 0.85◦C for the combined land and ocean surface over the period from 1880 to 2012

  • Differing responses between populations were found with respect to seedlings mortality dynamics under soil water depletion

  • The analyses revealed that seedlings’ mortality dynamics and the critical threshold for drought impact indicated by LD50SWA differ significantly among the selected populations

Read more

Summary

Introduction

There is much evidence that ongoing climate change is warming the global climate system given the average temperature rise of 0.85◦C for the combined land and ocean surface over the period from 1880 to 2012. There is strong evidence that an increased frequency of extreme weather events like heat waves and precipitation extremes is linked to global warming (Coumou and Rahmstorf, 2012). Projections of further warming in the Twenty-first century are linked to a likely increase in, and intensification of, heat waves and drought periods, in particular toward the end of the century (IPCC, 2013). For Europe it has been found, that the severity, duration, and frequency of drought events increased from 1950 to 2012 in Mediterranean regions, but moderately in parts of Central Europe (Spinoni et al, 2015). European forests have already responded to more intensive drought impacts with increased mortality (Allen et al, 2010)

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.