Abstract

We present the first result in exploring the gaseous halo and galaxy correlation using the Dark Energy Spectroscopic Instrument survey validation data in the Cosmic Evolution Survey (COSMOS) and Hyper Suprime-Cam field. We obtain multiphase gaseous halo properties in the circumgalactic medium by using 115 quasar spectra (signal-to-noise ratio > 3). We detect Mg ii absorption at redshift 0.6 < z < 2.5, C iv absorption at 1.6 < z < 3.6, and H i absorption associated with the Mg ii and C iv. By crossmatching the COSMOS2020 catalog, we identify the Mg ii and C iv host galaxies in 10 quasar fields at 0.9< z < 3.1. We find that within the impact parameter of 250 kpc, a tight correlation is seen between the strong Mg ii equivalent width and the host galaxy star formation rate. The covering fraction f c of the strong Mg ii selected galaxies, which is the ratio of the absorbing galaxy in a certain galaxy population, shows significant evolution in the main-sequence galaxies and marginal evolution in all the galaxy populations within 250 kpc at 0.9 < z < 2.2. The f c increase in the main-sequence galaxies likely suggests the coevolution of strong Mg ii absorbing gas and the main-sequence galaxies at the cosmic noon. Furthermore, Mg ii and C iv absorbing gas is detected out of the galaxy virial radius, tentatively indicating the feedback produced by the star formation and/or the environmental effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call