Abstract

The cutaneous biodistribution method (CBM) yields a high-resolution quantitative profile of drug deposition as a function of skin depth. However, it provides limited details about drug spatial distribution or penetration pathways. Mass spectrometry imaging (MSI) can complement the detailed quantitative data generated by CBM studies. The objectives of this work were to use desorption electrospray ionization (DESI)-MSI to (i) investigate the spatial cutaneous distributions of a topically applied drug and excipient and relate them to skin structures and (ii) image endogenous skin components and combine these results to gain insight into drug penetration routes. Porcine skin was used to compare two bioequivalent creams of econazole nitrate (ECZ) and a micelle formulation based on D-α-tocopheryl succinate polyethylene glycol 1000 (TPGS). DESI-MSI successfully imaged the cutaneous spatial distribution of ECZ and TPGS in 40 µm-thick horizontal sections and vertical cross-sections of the skin. Interestingly, clinically bioequivalent formulations did not appear to exhibit the same molecular distribution of ECZ in XY-horizontal sections. DESI-MSI also enabled visualization of TPGS (m/z 772.4706), mainly in the upper epidermis (≤80 µm). In conclusion, through co-localization of drugs and excipients with endogenous elements of the skin, DESI-MSI could further our understanding of the cutaneous penetration pathways of xenobiotics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.