Abstract
The effects of desflurane, sevoflurane, and isoflurane on left ventricular-arterial coupling and mechanical efficiency were examined and compared in acutely instrumented dogs. Twenty-four open-chest, barbiturate-anesthetized dogs were instrumented for measurement of aortic and left ventricular (LV) pressure (micromanometer-tipped catheter), dP/dtmax, and LV volume (conductance catheter). Myocardial contractility was assessed with the end-systolic pressure-volume relation (Ees) and preload recruitable stroke work (Msw) generated from a series of LV pressure-volume diagrams. Left ventricular-arterial coupling and mechanical efficiency were determined by the ratio of Ees to effective arterial elastance (Ea; the ratio of end-systolic arterial pressure to stroke volume) and the ratio of stroke work (SW) to pressure-volume area (PVA), respectively. Desflurane, sevoflurane, and isoflurane reduced heart rate, mean arterial pressure, and left ventricular systolic pressure. All three anesthetics caused similar decreases in myocardial contractility and left ventricular afterload, as indicated by reductions in Ees, Msw, and dP/dtmax and Ea, respectively. Despite causing simultaneous declines in Ees and Ea, desflurane decreased Ees/Ea (1.02 +/- 0.16 during control to 0.62 +/- 0.14 at 1.2 minimum alveolar concentration) and SW/PVA (0.51 +/- 0.04 during control to 0.43 +/- 0.05 at 1.2 minimum alveolar concentration). Similar results were observed with sevoflurane and isoflurane. The present findings indicate that volatile anesthetics preserve optimum left ventricular-arterial coupling and efficiency at low anesthetic concentrations (< 0.9 minimum alveolar concentration); however, mechanical matching of energy transfer from the left ventricle to the arterial circulation degenerates at higher end-tidal concentrations. These detrimental alterations in left ventricular-arterial coupling produced by desflurane, sevoflurane, and isoflurane contribute to reductions in overall cardiac performance observed with these agents in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.