Abstract

AimsHemophilic arthropathy (HA) is a typically iron overload induced joint disease secondary to continuous joint bleeding, however, the exact role of iron chelators in HA has not been fully elucidated. In the present study, we investigated whether desferoxamine (DFO), an iron chelator, could limit the development of HA and the underlying mechanisms. Materials and methodsA HA mice model was established by needle puncture in the left knees of FVIII-deficient hemophilic mice. HA progression was evaluated at 8 weeks after DFO administration. Moreover, chondrocytes were treated with ferric ammonium citrate (FAC) to mimic iron overload in vitro. Modulating effect of DFO on iron overload induced oxidative stress, chondrocytes apoptosis and extracellular matrix (ECM) degradation and the role of HIF-1α-BNIP3 mediated mitophagy were examined. Key findingsWe found that DFO limited the development of HA and protected iron overload induced ECM degradation, chondrocytes apoptosis and oxidative stress. Besides chelating Fe2+, we found that HIF-1α-BNIP3 mediated mitophagy played important roles in the protective effect of DFO. HIF-1α inhibition suppressed chondrocytes mitophagy process and partly diminished the protective effect of DFO on chondrocytes iron overload. SignificanceIn conclusion, DFO could protect against HA development via HIF-1α-BNIP3 mediated mitophagy, suggesting DFO might be a potential therapeutic supplement for HA treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.