Abstract
This paper shows the implementation of a section of a Spatial Decision Support System (SDSS) which was developed to the water resources area, more specifically to the groundwater area. The DSS, called ARENA (Análise de Recursos Naturais, in Portuguese), is made up of a groundwater model, a Geographic Information System (GIS), the JUMP, a georeferenced database and GUIs (Graphical User Interface) to access data. The Finite Element Method (FEM) was used to solve the differential partial equations that governs the groundwater flow. The DSS was developed through Oriented Object (OO) that represents systems based on classes. One important contribution is the integration of the model and the GIS, because both of them use the same geometric entity during the simulation. In the end, applications of the ARENA are presented to a hypothetical system (a non-steady simulation) in order to evaluate the DSS potentialities, where the JUMP tools supported well the groundwater simulation process, even though some limitation were found.
Highlights
This paper shows the implementation of a section of a Spatial Decision Support System (SDSS) which was developed to the water resources area, to the groundwater area
A fim de testar o ARENA, o simulador e sua integração ao JUMP, procedeu-se à modelagem de um sistema hipotético
Computers & Geosciences, v.31, n.4, p.425-435, 2005
Summary
O simulador do fluxo de águas subterrâneas foi programado para determinação das variações da carga hidráulica nas direções X e Y, ou seja, para casos bidimensionais (2D), considerando os dois casos seguintes: Aqüífero confinado em regime permanente; Aqüífero confinado em regime transiente;. De aqüíferos confinados em regime permanente, a aplicação do MEF gera um sistema de equações como o descrito no item III, das etapas de funcionamento do MEF. (Equação 4) Onde: ∆t – é o passo de tempo, [T]; C – é a matriz global, contendo as características geométricas dos elementos triangulares e o coeficiente de armazenamento (S) do sistema;. H(t + ∆t) – são as cargas hidráulicas no instante t + ∆t , [L], variáveis desconhecidas do problema; h(t) – cargas hidráulicas no tempo t, [L], conhecidos; Q(t + ∆t) e Q(t) – são os vetores com as vazões nos nós dos elementos triangulares nos instante t + ∆t e t, [L/T]; Maiores detalhes sobre as equações diferenciais parciais e a aplicação do MEF para resolução de equações diferenciais podem ser encontrados em Anderson; Woessner (1992)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.