Abstract
Background Food and chemical sensitivities have detrimental effects on health and the quality of life. The natural course of such sensitivities can potentially be altered through various types of allergen-specific immunotherapy, including low-dose immunotherapy. The molecular mechanism by which low-dose immunotherapy causes desensitization has not thus far been elucidated. While resting lymphocytes maintain a low cytosolic calcium ion concentration, antigen receptor signaling results in calcium ion influx, predominantly via store-operated calcium channels. We therefore hypothesized that desensitization by low-dose immunotherapy is associated with reduced influx of calcium ions into lymphocytes. The aim of this study was to test this hypothesis. Methods Intracellular lymphocytic calcium ion concentrations were assayed in a total of 47 patients, following incubation with picogram amounts of the test allergens, using a cell-permeable calcium-sensing ratiometric fluorescent dye and fluorescence spectroscopy, both at baseline and following successful provocation neutralization treatment with low-dose immunotherapy. Results Low-dose immunotherapy was associated with a reduction in lymphocytic intracellular calcium ion concentration following treatment of: 23 % for metabisulfite sensitivity (p<0.0004); 12 % for salicylate sensitivity (p<0.01); 23 % for benzoate sensitivity (p<0.01); 30 % for formaldehyde sensitivity (p<0.0001); 16 % for sensitivity to petrol exhaust (p<0.003); 16 % for natural gas sensitivity (p<0.001); 13 % for nickel sensitivity (p<0.05); 30 % for sensitivity to organophosphates (p<0.01); and 24 % for sensitivity to nitrosamines (p<0.05). Conclusions Low-dose immunotherapy may affect baseline levels of intracellular calcium in lymphocytes, supporting the premise that allergens affect cell signaling in immune cells and provocation neutralization immunotherapy helps to promote more normal immune cell signaling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.