Abstract
Purified rat Leydig tumour cells were pretreated with lutropin and the effect on the subsequent response to lutropin was determined. Maximal cyclic AMP production was achieved with the same concentration of lutropin in control and lutropin-pretreated cells; however, the maximum stimulated level in pretreated cells was only 30% of controls. The sensitivity to lutropin was decreased in lutropin-pretreated cells [ED(50) (dose that produces a response that is 50% of the maximum response) 60+/-5.7ng/ml and 8+/-1.8ng/ml (mean+/-s.d., n=3) for controls], as was the rate of maximal cyclic AMP production (0.58, compared with 1.89pmol/10(6) cells per min for controls). However, cholera-toxin-stimulated cyclic AMP production was not decreased by lutropin pretreatment, and a potentiation was seen at all time points studied (up to 6h). Pre-incubation with lutropin caused a decrease in specific (125)I-labelled human choriogonadotropin binding; however, this decrease was abolished if the cells were washed under acidic conditions (pH3.0 for 2min at 4 degrees C), indicating that occupation but not loss of the lutropin receptors had taken place. The effect of pretreating the cells with lutropin on adenylate cyclase activity in purified plasma membranes was also investigated. In plasma membranes from control cells both guanosine 5'-[beta,gamma-imido]triphosphate [p(NH)ppG] plus lutropin and NaF plus lutropin caused a 50-60-fold linear increase in cyclic AMP production over 40min compared with 15-fold with p(NH)ppG and 6-fold with lutropin alone. In plasma membranes isolated from lutropin-treated cells the NaF-plus-lutropin- and the p(NH)ppG-stimulated cyclic AMP production rates were unchanged but no effect of lutropin could be demonstrated with or without added p(NH)ppG. In contrast the plasma membranes from dibutyryl cyclic AMP-treated cells had similar cyclic AMP production rates to control cells with all stimulants studied. The present evidence obtained from studies both with intact cells and with isolated plasma membranes indicates that the initial lutropin-induced desensitization of the rat Leydig tumour cell is due to a lesion in the hormone-receptor coupling to the guanine nucleotide regulatory protein. This process is apparently not mediated by cyclic AMP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.