Abstract

Consecutive challenges with thyrotropin-releasing hormone (TRH) of oocytes expressing the TRH receptor (TRH-R) resulted in a pronounced desensitization, manifested as a decrease in chloride current amplitude and an increase in response latency. Exposure to low concentrations of TRH resulted in a marked decrease in the amplitude of the subsequent response to a higher concentration of the agonist, even though the second challenge was given before the onset of the response to the first challenge (within 3 - 15 s). Cellular calcium concentration ([Ca]i) did not increase within this interval, suggesting that calcium was not involved in the desensitization process. The latency of the second response, however, was either unchanged or shortened, implying additive effects of processes initiated by the first challenge. A longer interval (30 s) between the two challenges brought about a more pronounced decrease in amplitude and a prolongation of response latency. The calcium mobilization initiated by a second challenge with a high concentration of the agonist exhibited a longer latency, a lower rate of [Ca]i increase and a lower amplitude. Stimulation of co-expressed cholinergic-muscarinic ml receptors with a low concentration of acetylcholine resulted in a pronounced desensitization of the TRH response (heterologous desensitization). Activation of protein kinase C by beta-phorbol 12-myristate, 13-acetate resulted in a dose-dependent inhibition of the response to TRH, suggesting that protein kinase C was involved in desensitization. Chelerythrine, a specific inhibitor of protein kinase C, abolished a large part of the desensitization. A mutant of the TRH-R that lacks protein kinase C consensus phosphorylation sites in the C-terminal region, exhibited desensitization.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.