Abstract
Desensitization of insulin secretion describes a reversible state of decreased secretory responsiveness of the pancreatic β-cell, induced by a prolonged exposure to a multitude of stimuli. These include the main physiological stimulator, glucose, but also other nutrients like free fatty acids and practically all pharmacological stimulators acting by depolarization and Ca 2+ influx into the β-cell. Desensitization of insulin secretion appears to be an important step in the manifestation of type 2 diabetes and in the secondary failure of oral antidiabetic treatment. In this commentary, the basic concepts and the controversial issues in the field will be outlined. With regard to glucose-induced desensitization, two fundamentally opposing concepts have emerged. The first is that desensitization is the consequence of functional changes in the β-cell that impair glucose-recognition. The second is that long-term increased secretory activity leads to a depletion of releasable insulin, often in spite of increased insulin synthesis. The latter concept is more appropriately termed β-cell exhaustion. The same dichotomy applies to the desensitization evoked by pharmacological stimuli: again the relative contributions of a decreased insulin content versus alterations in signal transduction are in dispute. The action of tolbutamide on β-cells may be an example of desensitization caused by a lack of releasable insulin since the signaling mechanisms are nearly unchanged, whereas the action of phentolamine, an imidazoline, induces a strong desensitization without reducing insulin content or secretory granules, apparently by abolishing Ca 2+ influx. With pharmacological agents it seems that both, alterations in signal transduction and decreased availability of releasable insulin, can contribute to the desensitized state of the β-cell, the relative contribution being variable depending upon the exact nature of the secretory stimulus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.