Abstract

Developing highly active cluster catalysts for the bifunctional oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is significant for future renewable energy technology. Here, we employ first-principles calculations combined with a genetic algorithm to explore the activity trends of transition metal clusters supported on C2N. Our results indicate that the supported clusters, as bifunctional catalysts for the OER and the ORR, may outperform single-atom catalysts. In particular, the C2N-supported Ag6 cluster exhibits outstanding bifunctional activity with low overpotentials. Mechanistic analysis indicates that the activity of the cluster is related to the number of atoms in the active site as well as the interaction between the intermediate and the cluster. Accordingly, we identify a descriptor that links the intrinsic properties of the clusters with the activity of both the OER and the ORR. This work provides guidelines and strategies for the rational design of highly efficient bifunctional cluster catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.