Abstract

This study investigated competing chlorine evolution reaction (ClER) and oxygen evolution reaction (OER) on Pt electrodes under variable polarity reversal intervals (±16.7 mA cm-2, 30-600 s) in the context of distinctive roles of Pt(0) and PtOx on the surface in dilute (0.1 M) NaCl solutions. The substrate generation/tip collection mode of scanning electrochemical microscopy (SECM) quantified the current efficiency (CE) of ClER with a large tip-to-substrate distance (>500 μm) to avoid intervention of bubbles and spatial variations. Surface interrogation SECM using [Ru(NH3)6]2+/3+ coupled with X-ray photoelectron spectroscopy (XPS) identified the Pt4+-enriched surface of PtOx with a bilayer structure to give more efficient regeneration of Pt(0) under the shorter reversal interval. The in situ SECM complemented bulk electrolysis and XPS to demonstrate that ClER on Pt(0) and OER on PtOx primarily determine the CE of ClER, in agreement with a kinetic model. The descriptive role of surface Pt/PtOx ratio rationalized the enhanced selectivity for ClER upon the polarity switching, being independent on a scaling relationship. The current reversal (not allowed to IrO2 electrodes) also alleviated calcareous scale deposit in the electrolyte with hardness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.