Abstract

QoS in computer networking is the capability to provide better service to network traffic over various technologies such as ethernet and IP networks. This paper presents a descriptive analysis of WAN flow control and internet traffic on a Metro-E campus network. Issues on network congestion and delay in network QoS where internet traffic is gradually increasing, resulting in bursts of network capacity that affect network QoS. The method implies 12 months data collection and analysis on protocol, bytes and packets inbound and correlation between parameters on the Metro-E 100 Mbps campus network. The result presents heavy-tailed distributions on an inbound packet kurtosis value of 347 and an outbound packet kurtosis value of 780. Bytes outbound and inbound are skewed at 122 and right at 17 respectively. The average amount of data inbound and outbound is 458.5 MB and 34.8 MB. Protocol 6 TCP presents the highest amount of -traffic and a weak positive correlation at 0.104 exists between the inbound and outbound packets and bytes on the network. The correlation coefficient's 95% confidence interval ranges between 0.096 and 0.111. This research is significant in the future deployment of traffic scheduling, policing, and shaping algorithms for QoS bandwidth management on the WAN Metro-E campus network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.