Abstract

Using the general hypergraph technique developed in [7], we first give a much simpler proof of Shultz's theorem [10]: Each compact convex set is affinely homeomorphic to the state space of an orthomodular lattice. We also present partial solutions to open questions formulated in [10] - we show that not every compact convex set has to be a state space of a unital orthomodular lattice and that for unital orthomodular lattices the state space characterization can be obtained in the context of unital hypergraphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.