Abstract

The recent precise experimental determination of the monopole transition form factor from the ground state of ^{4}He to its 0_{2}^{+} resonance via electron scattering has reinvigorated discussions about the nature of this first excited state of the α particle. The 0_{2}^{+} state has been traditionally interpreted in the literature as the isoscalar monopole resonance (breathing mode) or, alternatively, as a particle-hole shell-model excitation. To better understand the nature of this state, which lies only ∼410  keV above the proton emission threshold, we employ the coupled-channel representation of the no-core Gamow shell model. By considering the [^{3}H+p], [^{3}He+n], and [^{2}H+^{2}H] reaction channels, we explain the excitation energy and monopole form factor of the 0_{2}^{+} state. We argue that the continuum coupling strongly impacts the nature of this state, which carries characteristics of the proton decay threshold.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call