Abstract
The recent precise experimental determination of the monopole transition form factor from the ground state of ^{4}He to its 0_{2}^{+} resonance via electron scattering has reinvigorated discussions about the nature of this first excited state of the α particle. The 0_{2}^{+} state has been traditionally interpreted in the literature as the isoscalar monopole resonance (breathing mode) or, alternatively, as a particle-hole shell-model excitation. To better understand the nature of this state, which lies only ∼410 keV above the proton emission threshold, we employ the coupled-channel representation of the no-core Gamow shell model. By considering the [^{3}H+p], [^{3}He+n], and [^{2}H+^{2}H] reaction channels, we explain the excitation energy and monopole form factor of the 0_{2}^{+} state. We argue that the continuum coupling strongly impacts the nature of this state, which carries characteristics of the proton decay threshold.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.