Abstract

We construct and investigate smooth orientable surfaces in su(N) algebras. The structural equations of surfaces associated with Grassmannian sigma models on Minkowski space are studied using moving frames adapted to the surfaces. The first and second fundamental forms of these surfaces as well as the relations between them as expressed in the Gauss–Weingarten and Gauss–Codazzi–Ricci equations are found. The scalar curvature and the mean curvature vector expressed in terms of a solution of Grassmanian sigma model are obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.