Abstract

The aim of this paper is to describe specific crack behaviour in the layered alumina-zirconia ceramic composite with strong interfaces and its strengthening mechanism. Different coefficients of thermal expansion of individual constituents of ceramic composite cause high residual stresses inside the layers during the sintering process. Compressive residual stresses can significantly influence the crack propagation through the laminate hereby improve the resistance of the material to the crack propagation. Estimation of crack behaviour in laminate was performed assuming the validity of linear elastic fracture mechanics using the criterion based on the strain energy density factor derived by Sih. This paper describes the strengthening mechanism in layered ceramic composites and prediction of their failure which contributes to better understanding of the fracture behaviour of the layered ceramic composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.