Abstract

The charge transport and accumulation in oil–paper can cause the insulation degradation. So far, the most widely used model to simulate space charge transport and accumulation is the bipolar charge transport (BCT) model, which can well simulate the space charge dynamics. However, there are two shortcomings in the algorithms for solving the BCT model. One is that there is almost no use of vectorisation technology, which may increase the complexity of the algorithm, the other is the usage of fixed step size which might bring extra computation cost. In view of this, an adaptive time-stepping transient upstream finite element method (FEM) is developed to solve the BCT model considering trapping/detrapping, as well as the recombination phenomenon under DC condition in this article. Then, a vectorisation technology is used in the method to optimise the algorithm. Moreover, the adaptive time-stepping method is introduced in simulation to reduce computation time and calculation amount. Simulation results are obtained by programing and later presented, which are basically consistent with the corresponding experimental results. Therefore, the proposed method is expected to promote the optimization design of the oil–paper insulation system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call