Abstract
The aim of this note is to investigate the relationship between strictly positive random fields on a lattice ℤν and the conditional probability measures at one point given the values on a finite subset of the lattice ℤν. We exhibit necessary and sufficient conditions for a one-point finite-conditional system to correspond to a unique strictly positive probability measure. It is noteworthy that the construction of the aforementioned probability measure is done explicitly by some simple procedure. Finally, we introduce a condition on the one-point finite conditional system that is sufficient for ensuring the mixing of the underlying random field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.